predict.LDAKPC.Rd
Predict function of Linear Fisher discriminant analysis of kernel principal components (DAKPC)
predict.LDAKPC(object = obj, prior, testData = data)
object | The trained LDAKPC object |
---|---|
prior | The prior weight of the predicted data |
testData | The data you want to test/predict |
The posterior probabilities of the predicted data.
The discriminant function of the predicted data.
The predicted scores of discriminant function, is always the same with x if there is no transformation.
Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab-an S4 package for kernel methods in R. Journal of statistical software, 11(9), 1-20.
Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K. R. (1999, August). Fisher discriminant analysis with kernels. In Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. no. 98th8468) (pp. 41-48). Ieee.
qinxinghu@gmail.com