predict.klfda_1.Rd
Prediction function for Kernel Local Fisher Discriminant Analysis KLFDA(klfda_1). The prediction uses three classifiers, as explained in the manual of klfda_1.
predict.klfda_1(object, newdata, dimen, ...)
object | The object from Kernel Local Fisher Discriminant Analysis KLFDA(klfda_1). |
---|---|
newdata | The test data. The data you want to predict. |
dimen | The data dimen, if NULL, the function will automatically learns from the data. |
The values include the class and posterior possibility of each class predicted by three classifiers.
The class labels from liner classifier
The posterior possibility of each class from linear classifier
Discrimintion results using the Mabayes classifier
Discrimintion results using the Naive bayes classifier
The reduced features
Sugiyama, M (2007). Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, vol.8, 1027-1061.
Sugiyama, M (2006). Local Fisher discriminant analysis for supervised dimensionality reduction. In W. W. Cohen and A. Moore (Eds.), Proceedings of 23rd International Conference on Machine Learning (ICML2006), 905-912.
Original Matlab Implementation: http://www.ms.k.u-tokyo.ac.jp/software.html#LFDA
Tang, Y., & Li, W. (2019). lfda: Local Fisher Discriminant Analysis inR. Journal of Open Source Software, 4(39), 1572.
Moore, A. W. (2004). Naive Bayes Classifiers. In School of Computer Science. Carnegie Mellon University.
Pierre Enel (2020). Kernel Fisher Discriminant Analysis (https://www.github.com/p-enel/MatlabKFDA), GitHub. Retrieved March 30, 2020.
Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab-an S4 package for kernel methods in R. Journal of statistical software, 11(9), 1-20.
qinxinghu@gmail.com
klfda_1, KLFDA, predict.KLFDA