predict.lfda.Rd
Prediction function for Local Fisher Discriminant Analysis (LFDA)
predict.LFDA(object, newdata, prior, dimen, ...)
object | The LFDA object |
---|---|
newdata | The newdata you want to predict |
prior | The prior of the new data |
dimen | The predicted dimen based on training model |
The class labels from liner classifier
The posterior possibility from linear classifier
The predicted results using Mabayes classifier
The predicted results using Naive Bayes classifier
Sugiyama, M (2007). Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, vol.8, 1027-1061.
Sugiyama, M (2006). Local Fisher discriminant analysis for supervised dimensionality reduction. In W. W. Cohen and A. Moore (Eds.), Proceedings of 23rd International Conference on Machine Learning (ICML2006), 905-912.
Tang, Y., & Li, W. (2019). lfda: Local Fisher Discriminant Analysis inR. Journal of Open Source Software, 4(39), 1572.
Moore, A. W. (2004). Naive Bayes Classifiers. In School of Computer Science. Carnegie Mellon University.
qinxinghu@gmail.com
LFDAtest=LFDA(iris[,1:4],y=iris[,5],r=3, CV=FALSE,usekernel = TRUE, fL = 0,kernel="gaussian",metric = "plain",knn = 6,tol = 1) LFDApred=predict.LFDA(LFDAtest,newdata=iris[1:10,1:4],prior=NULL)