KLFDA.Rd
Kernel Local Fisher Discriminant Analysis (KLFDA). This function implements the Kernel Local Fisher Discriminant Analysis with a Multinomial kernel.
KLFDA(X, Y, r, order, regParam, usekernel = TRUE, fL = 0.5, priors, tol, reg, metric, plotFigures = FALSE, verbose, ...)
X | The input training data |
---|---|
Y | The training labels |
r | The number of reduced features |
order | The order passing to Multinomial Kernel |
regParam | The regularization parameter for kernel matrix |
usekernel | Whether to used kernel classifier |
fL | pass to kernel classifier if usekenel is TRUE |
priors | The weight of each class |
tol | The tolerance for rejecting uni-variance |
reg | The regularization parameter |
metric | Type of metric in the embedding space (default: 'weighted') 'weighted' - weighted eigenvectors 'orthonormalized' - orthonormalized 'plain' - raw eigenvectors |
plotFigures | whether to plot the reduced features, 3D plot |
This function uses Multinomial Kernel, users can replace the Multinomial Kernel based on your own purpose. The final discrimination employs three classifiers, the basic linear classifier, the Mabayes (Bayes rule and the Mahalanobis distance), and Niave Bayes classifier.
The class labels from linear classifier
The posterior possibility of each class from linear classifier
Discrimintion results using the Mabayes classifier
Discrimintion results using the Naive bayes classifier
The reduced features
Sugiyama, M (2007). Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, vol.8, 1027-1061.
Sugiyama, M (2006). Local Fisher discriminant analysis for supervised dimensionality reduction. In W. W. Cohen and A. Moore (Eds.), Proceedings of 23rd International Conference on Machine Learning (ICML2006), 905-912.
Original Matlab Implementation: http://www.ms.k.u-tokyo.ac.jp/software.html#LFDA
Tang, Y., & Li, W. (2019). lfda: Local Fisher Discriminant Analysis inR. Journal of Open Source Software, 4(39), 1572.
Moore, A. W. (2004). Naive Bayes Classifiers. In School of Computer Science. Carnegie Mellon University.
Pierre Enel (2020). Kernel Fisher Discriminant Analysis (https://www.github.com/p-enel/MatlabKFDA), GitHub. Retrieved March 30, 2020.
Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab-an S4 package for kernel methods in R. Journal of statistical software, 11(9), 1-20.
qinxinghu@gmail.com
predict.KLFDA, klfda_1
btest=KLFDA(X=as.matrix(iris[,1:4]),Y=as.matrix(as.data.frame(iris[,5])),r=3,order=2,regParam=0.25, usekernel=TRUE,fL=0.5,priors=NULL,tol=1e-90,reg=0.01,metric = 'plain',plotFigures=FALSE, verbose=TRUE)#>#>#> [1] "Computing K..." #> [1] "Mean K is 25.153348085363"#>#> Warning: Numerical 0 probability for all classes with observation 1#> Warning: Numerical 0 probability for all classes with observation 2#> Warning: Numerical 0 probability for all classes with observation 3#> Warning: Numerical 0 probability for all classes with observation 4#> Warning: Numerical 0 probability for all classes with observation 5#> Warning: Numerical 0 probability for all classes with observation 6#> Warning: Numerical 0 probability for all classes with observation 7#> Warning: Numerical 0 probability for all classes with observation 8#> Warning: Numerical 0 probability for all classes with observation 9#> Warning: Numerical 0 probability for all classes with observation 10#> Warning: Numerical 0 probability for all classes with observation 1#> Warning: Numerical 0 probability for all classes with observation 2#> Warning: Numerical 0 probability for all classes with observation 3#> Warning: Numerical 0 probability for all classes with observation 4#> Warning: Numerical 0 probability for all classes with observation 5#> Warning: Numerical 0 probability for all classes with observation 6#> Warning: Numerical 0 probability for all classes with observation 7#> Warning: Numerical 0 probability for all classes with observation 8#> Warning: Numerical 0 probability for all classes with observation 9#> Warning: Numerical 0 probability for all classes with observation 10