predict.KLFDA.Rd
Prediction function for Kernel Local Fisher Discriminant Analysis (KLFDA) with a Multinomial kernel. Predictions are based on three classifiers. See KLFDA for detail. Results give the class labels and posterior possibility of the tested data.
predict.KLFDA(obj, newdata)
obj | The object from KLFDA model |
---|---|
newdata | The tested data |
The class labels from linear classifier
The posterior possibility of each class from linear classifier
Discrimintion results using the Mabayes classifier
Discrimintion results using the Naive bayes classifier
The reduced features
Sugiyama, M (2007). Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, vol.8, 1027-1061.
Sugiyama, M (2006). Local Fisher discriminant analysis for supervised dimensionality reduction. In W. W. Cohen and A. Moore (Eds.), Proceedings of 23rd International Conference on Machine Learning (ICML2006), 905-912.
Original Matlab Implementation: http://www.ms.k.u-tokyo.ac.jp/software.html#LFDA
Tang, Y., & Li, W. (2019). lfda: Local Fisher Discriminant Analysis inR. Journal of Open Source Software, 4(39), 1572.
Moore, A. W. (2004). Naive Bayes Classifiers. In School of Computer Science. Carnegie Mellon University.
Pierre Enel (2020). Kernel Fisher Discriminant Analysis (https://www.github.com/p-enel/MatlabKFDA), GitHub. Retrieved March 30, 2020.
Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab-an S4 package for kernel methods in R. Journal of statistical software, 11(9), 1-20.
qinxinghu@gmail.com
KLFDA, predict.klfda_1
btest=KLFDA(X=as.matrix(iris[,1:4]),Y=as.matrix(as.data.frame(iris[,5])),r=3,order=2,regParam=0.25, usekernel=TRUE,fL=0.5,priors=NULL,tol=1e-90,reg=0.01,metric = 'plain',plotFigures=FALSE, verbose=TRUE)#> [1] "Computing K..." #> [1] "Mean K is 25.153348085363"#> Warning: Numerical 0 probability for all classes with observation 1#> Warning: Numerical 0 probability for all classes with observation 2#> Warning: Numerical 0 probability for all classes with observation 3#> Warning: Numerical 0 probability for all classes with observation 4#> Warning: Numerical 0 probability for all classes with observation 5#> Warning: Numerical 0 probability for all classes with observation 6#> Warning: Numerical 0 probability for all classes with observation 7#> Warning: Numerical 0 probability for all classes with observation 8#> Warning: Numerical 0 probability for all classes with observation 9#> Warning: Numerical 0 probability for all classes with observation 10#> Warning: Numerical 0 probability for all classes with observation 1#> Warning: Numerical 0 probability for all classes with observation 2#> Warning: Numerical 0 probability for all classes with observation 3#> Warning: Numerical 0 probability for all classes with observation 4#> Warning: Numerical 0 probability for all classes with observation 5#> Warning: Numerical 0 probability for all classes with observation 6#> Warning: Numerical 0 probability for all classes with observation 7#> Warning: Numerical 0 probability for all classes with observation 8#> Warning: Numerical 0 probability for all classes with observation 9#> Warning: Numerical 0 probability for all classes with observation 10