Activation_info.Rd
This data list the example of the activation function in RNN-based model
data("Activation_info")
A data frame with 277 observations on the following 6 variables.
X
a numeric vector
Number
a numeric vector
Activation_name
a factor with levels Act_ART1_NC
Act_ART2_Identity
Act_ART2_NormIP
Act_ART2_NormP
Act_ART2_NormV
Act_ART2_NormW
Act_ART2_Rec
Act_ART2_Rst
Act_ARTMAP_DRho
Act_ARTMAP_NCa
Act_ARTMAP_NCb
Act_at_least_1
Act_at_least_2
Act_at_most_0
Act_BAM
Act_BSB
Act_CC_Thresh
Act_Component
Act_Elliott
Act_Euclid
Act_exactly_1
Act_Exponential
Act_HystStep
Act_Identity
Act_IdentityPlusBias
Act_less_than_0
Act_Logistic
Act_LogisticTbl
Act_LogSym
Act_MinOutPlusWeight
Act_Perceptron
Act_Product
Act_RBF_Gaussian
Act_RBF_MultiQuadratic
Act_RBF_ThinPlateSpline
Act_RM
Act_Signum
Act_Signum0
Act_Sinus
Act_Softmax
Act_StepFunc
Act_TACOMA
Act_TanH
Act_TanHPlusBias
Act_TanH_Xdiv2
Act_TD_Elliott
Act_TD_Logistic
ART1
ART1_Stable
ART1_Synchronous
ART1_Weights
ART2
ART2_Stable
ART2_Synchronous
ART2_Weights
ARTMAP
ARTMAP_Stable
ARTMAP_Synchronous
ARTMAP_Weights
Auto_Synchronous
BackPercolation
BackpropBatch
BackpropChunk
BackpropClassJogChunk
BackpropJogChunk
BackpropMomentum
BackpropWeightDecay
BAM_Order
BBPTT
Binary
BPTT
BPTT_Order
CC
CC_Order
CC_Weights
Clip
ClippHebb
Counterpropagation
CounterPropagation
CPN_Rand_Pat
CPN_Weights_v3.2
CPN_Weights_v3.3
DLVQ_Weights
Dynamic_LVQ
ENZO_noinit
ENZO_prop
Hebb
Hebb_Fixed_Act
Hebbian
Hopfield_Fixed_Act
Hopfield_Synchronous
Inverse
JE_BP
JE_BP_Momentum
JE_Order
JE_Quickprop
JE_Rprop
JE_Special
JE_Weights
Kohonen
Kohonen_Const
Kohonen_Order
Kohonen_Rand_Pat
Kohonen_Weights_v3.2
LinearScale
Logistic_notInhibit
MagPruning
Monte-Carlo
Noncontributing_Units
None
Norm
OptimalBrainDamage
OptimalBrainSurgeon
Out_ART2_Noise_ContDiff
Out_ART2_Noise_PLin
Out_Clip_01
Out_Clip_11
Out_Identity
Out_Threshold05
PruningFeedForward
PseudoInv
QPTT
Quickprop
RadialBasisLearning
Randomize_Weights
Random_Order
Random_Permutation
Random_Weights_Perc
RBF-DDA
RBF_Weights
RBF_Weights_Kohonen
RBF_Weights_Redo
RM_delta
RM_Random_Weights
Rprop
RpropMAP
SCG
Serial_Order
Sim_Ann_SS
Sim_Ann_WTA
Sim_Ann_WWTA
Site_at_least_1
Site_at_least_2
Site_at_most_0
Site_Max
Site_Min
Site_Pi
Site_Produkt
Site_Reciprocal
Site_WeightedSum
Skeletonization
Std_Backpropagation
Synchonous_Order
TACOMA
Threshold
TimeDelayBackprop
TimeDelay_Order
Topological_Order
type
a numeric vector
Number_of_inParams
a numeric vector
Number_of_outParams
a numeric vector
Example of available activation function in RNNS based models
Bergmeir, C. N., & Benítez Sánchez, J. M. (2012). Neural networks in R using the Stuttgart neural network simulator: RSNNS. American Statistical Association.