model_info.Rd
The model list that shows the available model in DeepGenomeScan
data("model_info")
A data frame with 35 observations on the following 6 variables.
X
a numeric vector
name
a factor with levels Convolutional Neural Network
Deep learning (Multi-Layer Perceptron, MLP)
glmnet (Lasso and Elastic-Net Regularized Generalized Models)
Linear Regression
Logic Regression
Model Averaged Neural Network
Monotone Multi-Layer Perceptron Neural Network
Multi-Layer Perceptron (MLP)
Multi-Layer Perceptron, MLP, multiple layers
Multilayer Perceptron Network by Stochastic Gradient Descent
Multilayer Perceptron Network with Dropout
Multilayer Perceptron Network with Weight Decay
Multi-Layer Perceptron Neural Network
Multi-Layer Perceptron, with multiple layers
Multi-Step Adaptive MCP-Net
Neural Network
Neural Networks with Feature Extraction
Principal Component Analysis
Quantile Regression Neural Network
Ridge Regression
Ridge Regression with Variable Selection
Stacked AutoEncoder Deep Neural Network
Stochastic Gradient Boosting
The Bayesian lasso
The lasso
Tree Models from Genetic Algorithms
model
a factor with levels avNNet
blasso
CNNsgd
dnn
evtree
foba
gbm
glmnet
glmnet_h2o
lasso
lm
logreg
mlp
mlpFCNN4Rsgd
mlph2o
mlpKerasDecay
mlpKerasDropout
mlpML
mlpneuralnet
mlpneuralnet1
mlpSGD
mlpWeightDecay
mlpWeightDecayML
modelmlpkerasdropout
modelRSNNSmlpdecay
monmlp
msaenet
mxnet
mxnetAdam
neuralnet
nnet
pcaNNet
pcr
qrnn
ridge
type
a factor with levels Classification, Regression
Regression
libraries
a factor with levels
deepnet
elasticnet
evtree
FCNN4R
FCNN4R, plyr
foba
gbm, plyr
glmnet, Matrix
h2o
keras
LogicReg
monmlp
monomvn
msaenet
mxnet
neuralnet
nnet
pls
qrnn
RSNNS
num_param
a factor with levels alpha
alpha, lambda
alphas, nsteps, scale
fraction
hidden1, n.ensemble
intercept
k, lambda
lambda
layer1, layer2, layer3
layer1, layer2, layer3,activation1,activation2,linear.output
layer1, layer2, layer3,activation1,linear.output
layer1, layer2, layer3, decay
layer1,layer2,layer3, decay,activation1,activation2
layer1, layer2, layer3, dropout, beta1, beta2, learningrate, activation
layer1, layer2, layer3, hidden_dropout, visible_dropout
layer1, layer2, layer3, learning.rate, momentum, dropout, activation
ncomp
nFilter,nStride,lambda, units1,units2,dropout, activation1,activation2,activation3
n.hidden, penalty, bag
n.trees, interaction.depth, shrinkage, n.minobsinnode
size
size, decay
size, decay, bag
size, dropout, batch_size, lr, rho, decay, activation
size, l2reg, lambda, learn_rate, momentum, gamma, minibatchsz, repeats
size, lambda, batch_size, lr, rho, decay, activation
sparsity
treesize, ntrees
units1,units2, dropout1,dropout2,batch_size, lr, rho, decay, activation1,activation2,activation3
units1,units2, l2reg, lambda, learn_rate, momentum, gamma, minibatchsz, repeats,activation1,activation2
units1,units2, l2reg, rho, activation
The available model list